\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let (X, \mathcal{M}, μ) be a finite measure space and $\nu: \mathcal{M} \rightarrow[0, \infty)$ a finitely additive set function with the property that for each $\varepsilon>0$, there is a $\delta>0$ such that for a measurable set E, if $\mu(E)<\delta$, then $\nu(E)<\varepsilon$. Show that ν is a measure on \mathcal{M}.
2. Let $\left(X, \mathcal{M}\right.$ be a measurable space and $\left\{\nu_{n}\right\}$ a sequence of finite measures on \mathcal{M} that converges setwise on \mathcal{M} to ν. Assume $\nu(X)<\infty$. Let $\left\{E_{k}\right\}$ be a descending sequence of measurable sets with empty intersection. Show that for each $\varepsilon>0$, there is a natural number k for which $\nu_{n}\left(E_{k}\right)<\varepsilon$ for all n.
3. Let $\left\{\mu_{n}\right\}$ be a sequence of measures on the Lebesgue measurable space ($[a, b], \mathcal{L}$) for which $\left\{\mu_{n}([a, b])\right\}$ is bounded and each μ_{n} is absolutely continuous with respect to Lebesgue measure m. Show that a subsequence of $\left\{\mu_{n}\right\}$ converges setwise on \mathcal{M} to a measure on $([a, b], \mathcal{L})$ that is absolutely continuous with respect to m.
4. Let (X, \mathcal{M}, μ) be a complete measure space. Prove that $\mathcal{B F} \mathcal{A}(X, \mathcal{M}, \mu)$ is a Banach space with respect to $\|\cdot\|_{\text {var }}$.
5. Let h and g be integrable functions on X and Y respectively and define $f(x, y)=h(x) g(y)$. Prove that

$$
\int_{X \times Y} f d(\mu \times \nu)=\int_{X} h d \mu \int_{Y} g d \nu
$$

6. Let $(x, y) \in(-\pi, \pi) \times \mathbb{R}$ and define the following functions:

$$
f(x, y)=\left\{\begin{array}{ll}
\frac{\sin x}{|y|} & \text { if } y \neq 0 \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad g(y)=\int_{-\pi}^{\pi} f(x, y) d x\right.
$$

Prove that $g(y) \in L^{1}(\mathbb{R})$. Does it follow that:

$$
\int_{\mathbb{R}}\left(\int_{-\pi}^{\pi} f(x, y) d x\right) d y=\int_{-\pi}^{\pi}\left(\int_{\mathbb{R}} f(x, y) d y\right) d y ?
$$

Why or why not?
7. Let X be an uncountable set with the discrete topology. What is $C_{c}(X)$? What are the Borel subsets of X ? Let X^{*} be the one-point compactification of X. What is $C\left(X^{*}\right)$? What are the Borel subsets of X^{*} ? Prove there is a Borel measure μ on X^{*} such that $\mu\left(X^{*}\right)=1$ and

$$
\int_{X} f d \mu=0
$$

for each $f \in C_{c}(X)$.
8. Let $k(x, y)$ be a bounded Borel measurable function on $X \times Y$, and let μ and ν be Radon measures on X and Y respectively. Prove that

$$
\begin{aligned}
\int_{X \times Y} k(x, y) \varphi(x) \psi(y) d(\mu \times \nu) & =\int_{Y}\left(\int_{X} k(x, y) \varphi(x) d \mu\right) \psi(y) d \nu \\
& =\int_{X}\left(\int_{Y} k(x, y) \psi(y) d \nu\right) \varphi(x) d \mu
\end{aligned}
$$

for all $\varphi \in C_{c}(X)$ and $\psi \in C_{c}(Y)$. Moreover show that if the integral in the above equation is zero for all $\varphi \in C_{c}(X)$ and all $\psi \in C_{c}(Y)$, then $k=0$ a.e. $\mu \times \nu$.

