Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

Practice Final Exam

1. Let (X, \mathcal{M}, μ) be a finite measure space and $\nu : \mathcal{M} \to [0, \infty)$ a finitely additive set function with the property that for each $\varepsilon > 0$, there is a $\delta > 0$ such that for a measurable set E, if $\mu(E) < \delta$, then $\nu(E) < \varepsilon$. Show that ν is a measure on \mathcal{M} .

2. Let (X, \mathcal{M}) be a measurable space and $\{\nu_n\}$ a sequence of finite measures on \mathcal{M} that converges setwise on \mathcal{M} to ν . Assume $\nu(X) < \infty$. Let $\{E_k\}$ be a descending sequence of measurable sets with empty intersection. Show that for each $\varepsilon > 0$, there is a natural number k for which $\nu_n(E_k) < \varepsilon$ for all n.

3. Let $\{\mu_n\}$ be a sequence of measures on the Lebesgue measurable space $([a, b], \mathcal{L})$ for which $\{\mu_n([a, b])\}$ is bounded and each μ_n is absolutely continuous with respect to Lebesgue measure m. Show that a subsequence of $\{\mu_n\}$ converges setwise on \mathcal{M} to a measure on $([a, b], \mathcal{L})$ that is absolutely continuous with respect to m.

4. Let (X, \mathcal{M}, μ) be a complete measure space. Prove that $\mathcal{BFA}(X, \mathcal{M}, \mu)$ is a Banach space with respect to $\|\cdot\|_{\text{var}}$.

5. Let h and g be integrable functions on X and Y respectively and define f(x, y) = h(x)g(y). Prove that

$$\int_{X \times Y} f \, d(\mu \times \nu) = \int_X h \, d\mu \int_Y g \, d\nu \, .$$

6. Let $(x, y) \in (-\pi, \pi) \times \mathbb{R}$ and define the following functions:

$$f(x,y) = \begin{cases} \frac{\sin x}{|y|} & \text{if } y \neq 0\\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad g(y) = \int_{-\pi}^{\pi} f(x,y) \, dx \, .$$

Prove that $g(y) \in L^1(\mathbb{R})$. Does it follow that:

$$\int_{\mathbb{R}} \left(\int_{-\pi}^{\pi} f(x, y) \, dx \right) \, dy = \int_{-\pi}^{\pi} \left(\int_{\mathbb{R}} f(x, y) \, dy \right) \, dy \, ?$$

Why or why not?

7. Let X be an uncountable set with the discrete topology. What is $C_c(X)$? What are the Borel subsets of X? Let X* be the one-point compactification of X. What is $C(X^*)$? What are the Borel subsets of X*? Prove there is a Borel measure μ on X* such that $\mu(X^*) = 1$ and

$$\int_X f \ d\mu = 0$$

for each $f \in C_c(X)$.

8. Let k(x, y) be a bounded Borel measurable function on $X \times Y$, and let μ and ν be Radon measures on X and Y respectively. Prove that

$$\int_{X \times Y} k(x, y)\varphi(x)\psi(y) \, d(\mu \times \nu) = \int_Y \left(\int_X k(x, y)\varphi(x) \, d\mu \right) \psi(y) \, d\nu$$
$$= \int_X \left(\int_Y k(x, y)\psi(y) \, d\nu \right) \varphi(x) \, d\mu$$

for all $\varphi \in C_c(X)$ and $\psi \in C_c(Y)$. Moreover show that if the integral in the above equation is zero for all $\varphi \in C_c(X)$ and all $\psi \in C_c(Y)$, then k = 0 a.e. $\mu \times \nu$.